InterveXion and UAMS have published a new manuscript describing the development of the ch-mAb7F9 antibody and early studies demonstrating it’s bioequivalence to the murine mAb7F9.

Abstract – Ch-mAb7F9, a human-mouse chimeric monoclonal antibody (mAb) designed to bind (+)-methamphetamine (METH) with high affinity and specificity, was produced as a treatment medication for METH abuse. In these studies, we present the preclinical characterization that provided predictive evidence that ch-mAb7F9 may be safe and effective in humans. In vitro ligand binding studies showed that ch-mAb7F9 is specific for and only binds its target ligands (METH, (+)-amphetamine, and 3,4-methylenedioxy-N-methylamphetamine) with high affinity. It did not bind endogenous neurotransmitters or other medications and was not bound by protein C1q, thus it is unlikely to stimulate in vivo complement-dependent cytotoxicity. Isothermal titration calorimetry potency studies showed that METH binding by ch-mAb7F9 is efficient. Pharmacokinetic studies of METH given after ch-mAb7F9 doses in rats demonstrated the in vivo application of these in vitro METH-binding characteristics. While METH had little effect on ch-mAb7F9 disposition, ch-mAb7F9 substantially altered METH disposition, dramatically reducing the volume of distribution and clearance of METH. The elimination half-life of METH was increased by ch-mAb7F9, but it was still very fast compared with the elimination of ch-mAb7F9. Importantly, the rapid elimination of unbound METH combined with previous knowledge of mAb:target ligand binding dynamics suggested that ch-mAb7F9 binding capacity regenerates over time. This finding has substantial therapeutic implications regarding the METH doses against which ch-mAb7F9 will be effective, on the duration of ch-mAb7F9 effects, and on the safety of ch-mAb7F9 in METH users who use METH while taking ch-mAb7F9. These results helped to support initiation of a Phase 1a study of ch-mAb7F9.

Link to Full Text: http://www.tandfonline.com/doi/full/10.4161/mabs.27620